Filosofia/Filosofia riformata/Aspetto quantitativo: differenze tra le versioni

Da Tempo di Riforma Wiki.
Vai alla navigazione Vai alla ricerca
mNessun oggetto della modifica
mNessun oggetto della modifica
 
(2 versioni intermedie di uno stesso utente non sono mostrate)
Riga 2: Riga 2:
----
----
{{TOCright}}
{{TOCright}}
= <font style="vertical-align:inherit">L'aspetto quantitativo</font> =
= <font style="vertical-align:inherit">L'aspetto quantitativo</font> =


Riga 11: Riga 10:
<font style="vertical-align:inherit">La possibilità 'buona' fondamentale che l'aspetto quantitativo presenta è l' </font>'''importo e l'ordine attendibili'''<font style="vertical-align:inherit"><font style="vertical-align:inherit">. </font><font style="vertical-align:inherit">L'ammontare quantitativo è attendibile perché ogni importo, diverso dall'infinito, conserva sempre e in tutte le situazioni lo stesso significato quantitativo, diverso da tutti gli altri. </font><font style="vertical-align:inherit">L'ordine è affidabile; </font><font style="vertical-align:inherit">per esempio 4-ness è sempre dopo 3.9-ness e prima di 4.1-ness. </font><font style="vertical-align:inherit">Questo è così fondamentale che di solito lo diamo per scontato, ma il funzionamento in tutti gli altri aspetti si basa su questo.</font></font>
<font style="vertical-align:inherit">La possibilità 'buona' fondamentale che l'aspetto quantitativo presenta è l' </font>'''importo e l'ordine attendibili'''<font style="vertical-align:inherit"><font style="vertical-align:inherit">. </font><font style="vertical-align:inherit">L'ammontare quantitativo è attendibile perché ogni importo, diverso dall'infinito, conserva sempre e in tutte le situazioni lo stesso significato quantitativo, diverso da tutti gli altri. </font><font style="vertical-align:inherit">L'ordine è affidabile; </font><font style="vertical-align:inherit">per esempio 4-ness è sempre dopo 3.9-ness e prima di 4.1-ness. </font><font style="vertical-align:inherit">Questo è così fondamentale che di solito lo diamo per scontato, ma il funzionamento in tutti gli altri aspetti si basa su questo.</font></font>


&nbsp;
== Definizione dell'Aspetto ==


== [[Definizione_dell'Aspetto|Definizione dell'Aspetto]]<small>[http://dooy.info/ax.html#defn <font style="vertical-align:inherit">x</font>]</small> ==
=== Nocciolo ===
 
=== [[Nocciolo:]]<small>[http://dooy.info/ax.html#kernel <font style="vertical-align:inherit">x</font>]</small> ===


*<font style="vertical-align:inherit">Quantità discreta (kernel di Dooyeweerd)</font>  
*<font style="vertical-align:inherit">Quantità discreta (kernel di Dooyeweerd)</font>  
Riga 31: Riga 28:
*<font style="vertical-align:inherit"><font style="vertical-align:inherit">L'atto di discretizzazione, che Dooyeweerd vede all'interno </font><font style="vertical-align:inherit">dell'aspetto</font></font>[http://dooy.info/analytical.html <font style="vertical-align:inherit">analitico .</font>]  
*<font style="vertical-align:inherit"><font style="vertical-align:inherit">L'atto di discretizzazione, che Dooyeweerd vede all'interno </font><font style="vertical-align:inherit">dell'aspetto</font></font>[http://dooy.info/analytical.html <font style="vertical-align:inherit">analitico .</font>]  


=== [[Alcuni_temi_centrali|Alcuni temi centrali]]<small>[http://dooy.info/ax.html#themes <font style="vertical-align:inherit">x</font>]</small> ===
=== Alcuni temi centrali ===


*<font style="vertical-align:inherit"><font style="vertical-align:inherit">Progressione. </font><font style="vertical-align:inherit">Che dà serie infinite.</font></font>  
*<font style="vertical-align:inherit"><font style="vertical-align:inherit">Progressione. </font><font style="vertical-align:inherit">Che dà serie infinite.</font></font>  
*<font style="vertical-align:inherit"><font style="vertical-align:inherit">I numeri irrazionali, direbbe Dooyeweerd, non sono numeri autentici, ma piuttosto un'anticipazione dell'aspetto spaziale. </font><font style="vertical-align:inherit">La nostra tendenza a presumere che siano numeri di pari status con i numeri razionali deriva da alcuni aritmetici che hanno fuso il</font></font>[http://dooy.info/summary.html#2d <font style="vertical-align:inherit">lato soggetto (numeri) nel lato legge (leggi aritmetiche)</font>]<font style="vertical-align:inherit">.</font>  
*<font style="vertical-align:inherit"><font style="vertical-align:inherit">I numeri irrazionali, direbbe Dooyeweerd, non sono numeri autentici, ma piuttosto un'anticipazione dell'aspetto spaziale. </font><font style="vertical-align:inherit">La nostra tendenza a presumere che siano numeri di pari status con i numeri razionali deriva da alcuni aritmetici che hanno fuso il</font></font>[http://dooy.info/summary.html#2d <font style="vertical-align:inherit">lato soggetto (numeri) nel lato legge (leggi aritmetiche)</font>]<font style="vertical-align:inherit">.</font>  
&nbsp;
*<font style="vertical-align:inherit">Massimizzazione, minimizzazione di attributi numerici.</font>  
*<font style="vertical-align:inherit">Massimizzazione, minimizzazione di attributi numerici.</font>  
*<font style="vertical-align:inherit">Confronto numerico</font>  
*<font style="vertical-align:inherit">Confronto numerico</font>  
Riga 44: Riga 38:


<font style="vertical-align:inherit">Si noti che probabilmente questo aspetto copre numeri interi e razionali (rapporto) </font>[[#reals|<font style="vertical-align:inherit">ma non reali (continui)</font>]]<font style="vertical-align:inherit">.</font>
<font style="vertical-align:inherit">Si noti che probabilmente questo aspetto copre numeri interi e razionali (rapporto) </font>[[#reals|<font style="vertical-align:inherit">ma non reali (continui)</font>]]<font style="vertical-align:inherit">.</font>
&nbsp;


==== <font style="vertical-align:inherit"><font style="vertical-align:inherit">Sull'uno e sui molti; </font><font style="vertical-align:inherit">Su unità e molteplicità</font></font> ====
==== <font style="vertical-align:inherit"><font style="vertical-align:inherit">Sull'uno e sui molti; </font><font style="vertical-align:inherit">Su unità e molteplicità</font></font> ====
Riga 53: Riga 45:
<small style="font-size:11.2px"><font style="vertical-align:inherit"><font style="vertical-align:inherit">Lo studio: ho diviso le 144 occorrenze di "molteplicità" in NC, I-IV in quelle che accompagnavano "l'unità" (69) da quelle che non lo facevano (75). </font><font style="vertical-align:inherit">Nel primo, "logico" è stato trovato 65 volte. </font><font style="vertical-align:inherit">In quest'ultimo, "logico" è stato trovato solo 20 volte. </font><font style="vertical-align:inherit">Nelle occorrenze senza "unità", "molteplicità di" era per lo più semplicemente dire "molti" di qualche tipo di cosa, per esempio di forme storiche. </font><font style="vertical-align:inherit">Ergo, sembra che "l'unità-molteplicità" riguardi l'analisi, non il puro quantitativo.</font></font></small>
<small style="font-size:11.2px"><font style="vertical-align:inherit"><font style="vertical-align:inherit">Lo studio: ho diviso le 144 occorrenze di "molteplicità" in NC, I-IV in quelle che accompagnavano "l'unità" (69) da quelle che non lo facevano (75). </font><font style="vertical-align:inherit">Nel primo, "logico" è stato trovato 65 volte. </font><font style="vertical-align:inherit">In quest'ultimo, "logico" è stato trovato solo 20 volte. </font><font style="vertical-align:inherit">Nelle occorrenze senza "unità", "molteplicità di" era per lo più semplicemente dire "molti" di qualche tipo di cosa, per esempio di forme storiche. </font><font style="vertical-align:inherit">Ergo, sembra che "l'unità-molteplicità" riguardi l'analisi, non il puro quantitativo.</font></font></small>


&nbsp;
=== Idee sbagliate comuni ===
 
=== [[Idee_sbagliate_comuni|Idee sbagliate comuni]]<small>[http://dooy.info/ax.html#miscon <font style="vertical-align:inherit">x</font>]</small> ===


*<font style="vertical-align:inherit"><font style="vertical-align:inherit">Quella quantità può essere continua; </font><font style="vertical-align:inherit">la continuità è dell'aspetto spaziale; </font><font style="vertical-align:inherit">vedi</font></font>[http://dooy.info/quantitative.html#antic <font style="vertical-align:inherit">sotto</font>]<font style="vertical-align:inherit">.</font>  
*<font style="vertical-align:inherit"><font style="vertical-align:inherit">Quella quantità può essere continua; </font><font style="vertical-align:inherit">la continuità è dell'aspetto spaziale; </font><font style="vertical-align:inherit">vedi</font></font>[http://dooy.info/quantitative.html#antic <font style="vertical-align:inherit">sotto</font>]<font style="vertical-align:inherit">.</font>  


== [[L'aspetto_stesso|L'aspetto stesso]] ==
== L'aspetto stesso ==


=== [[Non_assolutezza|Non assolutezza]]<small>[http://dooy.info/ax.html#non.abs <font style="vertical-align:inherit">x</font>]</small> ===
=== Non assolutezza ===


<font style="vertical-align:inherit"><font style="vertical-align:inherit">L'assolutezza ha a che fare con l'affidabilità. </font><font style="vertical-align:inherit">Possiamo fare affidamento su ciò che è assoluto. </font><font style="vertical-align:inherit">Un 'bene' che questo aspetto introduce nella realtà creata è l'affidabilità. </font><font style="vertical-align:inherit">Ad esempio, il settenismo è sempre il settenismo, mai il sessismo, e su questo si può fare affidamento in ogni luogo e in ogni tempo. </font><font style="vertical-align:inherit">La somma di sette e sei sarà sempre tredici, mai quindici. </font><font style="vertical-align:inherit">Quindi l'aspetto quantitativo sembra assolutamente attendibile. </font><font style="vertical-align:inherit">Ad esempio, tutto il funzionamento fisico si basa su questo, sia quantistico che macroscopico. </font><font style="vertical-align:inherit">Ma sembrano esserci almeno due tipi di non assolutezza [qualcuno più esperto di me ha bisogno di controllarli].</font></font> &nbsp;
<font style="vertical-align:inherit"><font style="vertical-align:inherit">L'assolutezza ha a che fare con l'affidabilità. </font><font style="vertical-align:inherit">Possiamo fare affidamento su ciò che è assoluto. </font><font style="vertical-align:inherit">Un 'bene' che questo aspetto introduce nella realtà creata è l'affidabilità. </font><font style="vertical-align:inherit">Ad esempio, il settenismo è sempre il settenismo, mai il sessismo, e su questo si può fare affidamento in ogni luogo e in ogni tempo. </font><font style="vertical-align:inherit">La somma di sette e sei sarà sempre tredici, mai quindici. </font><font style="vertical-align:inherit">Quindi l'aspetto quantitativo sembra assolutamente attendibile. </font><font style="vertical-align:inherit">Ad esempio, tutto il funzionamento fisico si basa su questo, sia quantistico che macroscopico. </font><font style="vertical-align:inherit">Ma sembrano esserci almeno due tipi di non assolutezza [qualcuno più esperto di me ha bisogno di controllarli].</font></font> &nbsp;
Riga 68: Riga 58:
*<font style="vertical-align:inherit"><font style="vertical-align:inherit">Casualità dell'occorrenza dei numeri primi. </font><font style="vertical-align:inherit">Dall'affidabilità ci si potrebbe aspettare leggi che determinano dove si verifica ogni numerazione, ad esempio l'uniformità è ogni altra integrità. </font><font style="vertical-align:inherit">Ma la distribuzione dei numeri primi sembra del tutto casuale, cioè senza legge. </font><font style="vertical-align:inherit">Non è stato ancora trovato alcun modo per prevedere in modo affidabile il prossimo numero primo.</font></font>  
*<font style="vertical-align:inherit"><font style="vertical-align:inherit">Casualità dell'occorrenza dei numeri primi. </font><font style="vertical-align:inherit">Dall'affidabilità ci si potrebbe aspettare leggi che determinano dove si verifica ogni numerazione, ad esempio l'uniformità è ogni altra integrità. </font><font style="vertical-align:inherit">Ma la distribuzione dei numeri primi sembra del tutto casuale, cioè senza legge. </font><font style="vertical-align:inherit">Non è stato ancora trovato alcun modo per prevedere in modo affidabile il prossimo numero primo.</font></font>  


&nbsp;
=== Scienza speciale ===
 
=== [[Scienza_speciale|Scienza speciale]]<small>[http://dooy.info/ax.html#science <font style="vertical-align:inherit">x</font>]</small> ===


*<font style="vertical-align:inherit">Aritmetica</font>  
*<font style="vertical-align:inherit">Aritmetica</font>  
Riga 76: Riga 64:
*<font style="vertical-align:inherit">Si noti che la matematica, così come viene praticata nel suo insieme, include molto più della quantità in matematica, poiché è un'attività che coinvolge ad esempio analisi e distinzione, comunicazione simbolica, ecc.</font>  
*<font style="vertical-align:inherit">Si noti che la matematica, così come viene praticata nel suo insieme, include molto più della quantità in matematica, poiché è un'attività che coinvolge ad esempio analisi e distinzione, comunicazione simbolica, ecc.</font>  


=== [[Istituzioni|Istituzioni]]<small>[http://dooy.info/ax.html#institutions <font style="vertical-align:inherit">x</font>]</small> ===
=== Istituzioni ===


=== [[Shalom|Shalom]]<small>[http://dooy.info/ax.html#shalom <font style="vertical-align:inherit">x</font>]</small> ===
=== Shalom ===


*<font style="vertical-align:inherit"><font style="vertical-align:inherit">Che possiamo fare affidamento su una quantità che è sempre quella quantità finché non viene agita su di essa. </font><font style="vertical-align:inherit">La 7-ness non diventa improvvisamente 6-ness.</font></font>  
*<font style="vertical-align:inherit"><font style="vertical-align:inherit">Che possiamo fare affidamento su una quantità che è sempre quella quantità finché non viene agita su di essa. </font><font style="vertical-align:inherit">La 7-ness non diventa improvvisamente 6-ness.</font></font>  


=== [[Danno|Danno]]<small>[http://dooy.info/ax.html#harm <font style="vertical-align:inherit">x</font>]</small> ===
=== Danno ===


*<font style="vertical-align:inherit"><font style="vertical-align:inherit">Obiettivi nazionali - come il governo del Regno Unito sembra entusiasta. </font><font style="vertical-align:inherit">È stato riferito oggi che, poiché il governo ha assegnato ai medici generici un obiettivo di una lista d'attesa non superiore a 48 ore, alcuni ambulatori si rifiutano di prenotare appuntamenti con più di 48 ore di anticipo. </font><font style="vertical-align:inherit">Possiamo vedere questo come un'elevazione dell'aspetto quantitativo rispetto a quello della salute (</font></font>[http://dooy.info/biotic.html <font style="vertical-align:inherit">biotica</font>]<font style="vertical-align:inherit">) o della cura ( </font>[http://dooy.info/ethical.html <font style="vertical-align:inherit">etica</font>]<font style="vertical-align:inherit">). </font><small><font style="vertical-align:inherit"><font style="vertical-align:inherit">(Naturalmente, gli obiettivi implicano anche il conseguimento, che è </font><font style="vertical-align:inherit">dell'aspetto</font></font>[http://dooy.info/formative.html <font style="vertical-align:inherit"><font style="vertical-align:inherit">formativo .)</font></font>]</small>  
*<font style="vertical-align:inherit"><font style="vertical-align:inherit">Obiettivi nazionali - come il governo del Regno Unito sembra entusiasta. </font><font style="vertical-align:inherit">È stato riferito oggi che, poiché il governo ha assegnato ai medici generici un obiettivo di una lista d'attesa non superiore a 48 ore, alcuni ambulatori si rifiutano di prenotare appuntamenti con più di 48 ore di anticipo. </font><font style="vertical-align:inherit">Possiamo vedere questo come un'elevazione dell'aspetto quantitativo rispetto a quello della salute (</font></font>[http://dooy.info/biotic.html <font style="vertical-align:inherit">biotica</font>]<font style="vertical-align:inherit">) o della cura ( </font>[http://dooy.info/ethical.html <font style="vertical-align:inherit">etica</font>]<font style="vertical-align:inherit">). </font><small><font style="vertical-align:inherit"><font style="vertical-align:inherit">(Naturalmente, gli obiettivi implicano anche il conseguimento, che è </font><font style="vertical-align:inherit">dell'aspetto</font></font>[http://dooy.info/formative.html <font style="vertical-align:inherit"><font style="vertical-align:inherit">formativo .)</font></font>]</small>  
&nbsp;


=== <font style="vertical-align:inherit">Divinizzare questo aspetto quantitativo</font> ===
=== <font style="vertical-align:inherit">Divinizzare questo aspetto quantitativo</font> ===
Riga 92: Riga 78:
<font style="vertical-align:inherit"><font style="vertical-align:inherit">Dooyeweerd suggerisce [NC, II, 337-8] che Cartesio e Leibniz deificarono la matematica. </font><font style="vertical-align:inherit">Questa è una sorta di riduzione al quantitativo.</font></font> &nbsp;
<font style="vertical-align:inherit"><font style="vertical-align:inherit">Dooyeweerd suggerisce [NC, II, 337-8] che Cartesio e Leibniz deificarono la matematica. </font><font style="vertical-align:inherit">Questa è una sorta di riduzione al quantitativo.</font></font> &nbsp;


=== [[Contributi_dal_campo|Contributi dal campo]]<small>[http://dooy.info/ax.html#field <font style="vertical-align:inherit">x</font>]</small> ===
=== Contributi dal campo ===


<font style="vertical-align:inherit">Pieter de Wet ha inviato un'e-mail (12 aprile 2012) a quanto segue:</font>
<font style="vertical-align:inherit">Pieter de Wet ha inviato un'e-mail (12 aprile 2012) a quanto segue:</font>
Riga 102: Riga 88:
----
----


== [[L'aspetto_tra_gli_altri|L'aspetto tra gli altri]] ==
== L'aspetto tra gli altri ==


=== [[Dipendenze_dalla_legge|Dipendenze dalla legge]]<small>[http://dooy.info/ax.html#dependency <font style="vertical-align:inherit">x</font>]</small> ===
=== Dipendenze dalla legge ===


<font style="vertical-align:inherit"><font style="vertical-align:inherit">Nessuno - questo è l'aspetto più antico, quindi le sue leggi non dipendono da quelle di nessun altro aspetto. </font><font style="vertical-align:inherit">Tuttavia, come con tutta la realtà, dipendono dal Dio vivente, che sostiene e sostiene tutta la creazione.</font></font> <font style="vertical-align:inherit"><font style="vertical-align:inherit">Viceversa, tutte le leggi dipendono da quelle di questo aspetto. </font><font style="vertical-align:inherit">In effetti, questo sembra essere ciò che troviamo.</font></font>
<font style="vertical-align:inherit"><font style="vertical-align:inherit">Nessuno - questo è l'aspetto più antico, quindi le sue leggi non dipendono da quelle di nessun altro aspetto. </font><font style="vertical-align:inherit">Tuttavia, come con tutta la realtà, dipendono dal Dio vivente, che sostiene e sostiene tutta la creazione.</font></font> <font style="vertical-align:inherit"><font style="vertical-align:inherit">Viceversa, tutte le leggi dipendono da quelle di questo aspetto. </font><font style="vertical-align:inherit">In effetti, questo sembra essere ciò che troviamo.</font></font>


==== [[Serie_di_Fibonacci|Serie di Fibonacci]] ====
==== Serie di Fibonacci ====


<font style="vertical-align:inherit"><font style="vertical-align:inherit">I semi di girasole sono disposti come una serie di Fibonacci. </font><font style="vertical-align:inherit">Così sono molte altre cose biologiche. </font><font style="vertical-align:inherit">Questa è una prova del concetto di Dooyeweerd secondo cui, ad esempio , le leggi</font></font>[http://dooy.info/biotic.html <font style="vertical-align:inherit">biotiche</font>]<font style="vertical-align:inherit"><font style="vertical-align:inherit">dipendono dalla matematica come aspetto precedente. </font><font style="vertical-align:inherit">Possiamo vedere almeno una ragione per questo (spiegatami da un eminente matematico di cui non ricordo il nome): fornisce la migliore disposizione dell'imballaggio, con il minimo spreco di spazio. </font><font style="vertical-align:inherit">(Notare il suggerimento di un collegamento con l' </font><font style="vertical-align:inherit">aspetto</font></font>[http://dooy.info/economic.html <font style="vertical-align:inherit">economico .)</font>]
<font style="vertical-align:inherit"><font style="vertical-align:inherit">I semi di girasole sono disposti come una serie di Fibonacci. </font><font style="vertical-align:inherit">Così sono molte altre cose biologiche. </font><font style="vertical-align:inherit">Questa è una prova del concetto di Dooyeweerd secondo cui, ad esempio , le leggi</font></font>[http://dooy.info/biotic.html <font style="vertical-align:inherit">biotiche</font>]<font style="vertical-align:inherit"><font style="vertical-align:inherit">dipendono dalla matematica come aspetto precedente. </font><font style="vertical-align:inherit">Possiamo vedere almeno una ragione per questo (spiegatami da un eminente matematico di cui non ricordo il nome): fornisce la migliore disposizione dell'imballaggio, con il minimo spreco di spazio. </font><font style="vertical-align:inherit">(Notare il suggerimento di un collegamento con l' </font><font style="vertical-align:inherit">aspetto</font></font>[http://dooy.info/economic.html <font style="vertical-align:inherit">economico .)</font>]


=== [[Analogie|Analogie]]<small>[http://dooy.info/ax.html#analogies <font style="vertical-align:inherit">x</font>]</small> ===
=== Analogie ===


<font style="vertical-align:inherit"><font style="vertical-align:inherit">Pratichiamo molte analogie con la modalità quantitativa. </font><font style="vertical-align:inherit">Ogni volta che usiamo una metrica stiamo trasducendo in numero, e quindi facendo uso del potenziale insito per l'analogia tra ogni aspetto e il quantitativo. </font><font style="vertical-align:inherit">Ecco alcuni esempi.</font></font> &nbsp;
<font style="vertical-align:inherit"><font style="vertical-align:inherit">Pratichiamo molte analogie con la modalità quantitativa. </font><font style="vertical-align:inherit">Ogni volta che usiamo una metrica stiamo trasducendo in numero, e quindi facendo uso del potenziale insito per l'analogia tra ogni aspetto e il quantitativo. </font><font style="vertical-align:inherit">Ecco alcuni esempi.</font></font> &nbsp;
Riga 120: Riga 106:
*<font style="vertical-align:inherit"><font style="vertical-align:inherit">La musica è ciò che ha convinto i pitagorici che l'universo funziona con i numeri - qualche legame con l' </font><font style="vertical-align:inherit">aspetto</font></font>[http://dooy.info/aesthetic.html <font style="vertical-align:inherit">estetico&nbsp;?</font>]<font style="vertical-align:inherit">Probabilmente un collegamento analogico piuttosto che di dipendenza.</font>  
*<font style="vertical-align:inherit"><font style="vertical-align:inherit">La musica è ciò che ha convinto i pitagorici che l'universo funziona con i numeri - qualche legame con l' </font><font style="vertical-align:inherit">aspetto</font></font>[http://dooy.info/aesthetic.html <font style="vertical-align:inherit">estetico&nbsp;?</font>]<font style="vertical-align:inherit">Probabilmente un collegamento analogico piuttosto che di dipendenza.</font>  
*<font style="vertical-align:inherit">La capacità del computer di eseguire operazioni aritmetiche utilizzando la logica binaria potrebbe essere vista come una retrocessione dall'aspetto </font>[http://dooy.info/analytical.html <font style="vertical-align:inherit">logico (analitico)</font>]<font style="vertical-align:inherit"><font style="vertical-align:inherit">a quello quantitativo. </font><font style="vertical-align:inherit">Ma questo deve essere verificato in modo più preciso.</font></font>  
*<font style="vertical-align:inherit">La capacità del computer di eseguire operazioni aritmetiche utilizzando la logica binaria potrebbe essere vista come una retrocessione dall'aspetto </font>[http://dooy.info/analytical.html <font style="vertical-align:inherit">logico (analitico)</font>]<font style="vertical-align:inherit"><font style="vertical-align:inherit">a quello quantitativo. </font><font style="vertical-align:inherit">Ma questo deve essere verificato in modo più preciso.</font></font>  
&nbsp;
*<font style="vertical-align:inherit">Bergson vedeva la durata come il dispiegarsi del numero in azione.</font>  
*<font style="vertical-align:inherit">Bergson vedeva la durata come il dispiegarsi del numero in azione.</font>  
*<font style="vertical-align:inherit">eccetera.</font>  
*<font style="vertical-align:inherit">eccetera.</font>  


<font style="vertical-align:inherit">Analogie di altri aspetti nel quantitativo potrebbero includere:</font>
<font style="vertical-align:inherit">Analogie di altri aspetti nel quantitativo potrebbero includere:</font>
&nbsp;


*<font style="vertical-align:inherit"><font style="vertical-align:inherit">Che ogni numero (maggiore di 1) possa dirsi simultaneo con tutti i fattori che lo compongono (moltiplicativi o additivi) potrebbe essere un'analogia </font><font style="vertical-align:inherit">dell'aspetto</font></font>[http://dooy.info/spatial.html#qnv.simult <font style="vertical-align:inherit">spaziale .</font>]<font style="vertical-align:inherit"><font style="vertical-align:inherit">Non è simultaneità nel modo che ritroviamo nell'aspetto spaziale, essendo non necessario. </font><font style="vertical-align:inherit">Da qui la congettura di Goldbach, che ogni numero pari è la somma di due numeri primi.</font></font>  
*<font style="vertical-align:inherit"><font style="vertical-align:inherit">Che ogni numero (maggiore di 1) possa dirsi simultaneo con tutti i fattori che lo compongono (moltiplicativi o additivi) potrebbe essere un'analogia </font><font style="vertical-align:inherit">dell'aspetto</font></font>[http://dooy.info/spatial.html#qnv.simult <font style="vertical-align:inherit">spaziale .</font>]<font style="vertical-align:inherit"><font style="vertical-align:inherit">Non è simultaneità nel modo che ritroviamo nell'aspetto spaziale, essendo non necessario. </font><font style="vertical-align:inherit">Da qui la congettura di Goldbach, che ogni numero pari è la somma di due numeri primi.</font></font>  


&nbsp;
==== I tipi di quantità anticipano gli aspetti successivi ====
 
==== [[I_tipi_di_quantità_anticipano_gli_aspetti_successivi|I tipi di quantità anticipano gli aspetti successivi]] ====


<font style="vertical-align:inherit">(Grazie ad Arie Dirkzwager per averlo chiarito.)</font> <font style="vertical-align:inherit"><font style="vertical-align:inherit">Primo, abbiamo la quantità discreta semplice, che conta le cose; </font><font style="vertical-align:inherit">questo tuttavia è un obiettivo piuttosto che una piena anticipazione.</font></font>
<font style="vertical-align:inherit">(Grazie ad Arie Dirkzwager per averlo chiarito.)</font> <font style="vertical-align:inherit"><font style="vertical-align:inherit">Primo, abbiamo la quantità discreta semplice, che conta le cose; </font><font style="vertical-align:inherit">questo tuttavia è un obiettivo piuttosto che una piena anticipazione.</font></font>
Riga 157: Riga 136:
<font style="vertical-align:inherit">Vedi questo in una </font>[http://dooy.info/anticipation.html#qat <font style="vertical-align:inherit">forma tabulare</font>]<font style="vertical-align:inherit">più completa per illustrare la nozione di </font>[http://dooy.info/anticipation.html <font style="vertical-align:inherit">anticipazione</font>]<font style="vertical-align:inherit">nel suo insieme.</font>
<font style="vertical-align:inherit">Vedi questo in una </font>[http://dooy.info/anticipation.html#qat <font style="vertical-align:inherit">forma tabulare</font>]<font style="vertical-align:inherit">più completa per illustrare la nozione di </font>[http://dooy.info/anticipation.html <font style="vertical-align:inherit">anticipazione</font>]<font style="vertical-align:inherit">nel suo insieme.</font>


=== [[Antinomie|Antinomie]]<small>[http://dooy.info/ax.html#antinomy <font style="vertical-align:inherit">x</font>]</small> ===
=== Antinomie ===


=== [[Riduzioni_comuni|Riduzioni comuni]]<small>[http://dooy.info/ax.html#reduction <font style="vertical-align:inherit">x</font>]</small> ===
=== Riduzioni comuni ===


==== [[Finanza|Finanza]] ====
==== Finanza ====


<font style="vertical-align:inherit"><font style="vertical-align:inherit">La finanza corrente, il commercio e la contabilità sembrano spesso ridursi a questo aspetto. </font><font style="vertical-align:inherit">Mentre il mantenimento di un budget è veramente</font></font>[http://dooy.info/economic.html <font style="vertical-align:inherit">economico</font>]<font style="vertical-align:inherit"><font style="vertical-align:inherit">il cui nocciolo è la frugalità, l'enfasi negli affari oggi è più in una semplice </font>[http://dooy.info/quantitative.html#themes ''<font style="vertical-align:inherit">massimizzazione</font>'']<font style="vertical-align:inherit">numerica, ad esempio dei profitti o dell'efficienza e una </font>[http://dooy.info/quantitative.html#themes ''<font style="vertical-align:inherit">minimizzazione</font>'']<font style="vertical-align:inherit">dei costi. </font><font style="vertical-align:inherit">Nessuna idea di un limite qui; </font><font style="vertical-align:inherit">è puramente numerico.</font></font>
<font style="vertical-align:inherit"><font style="vertical-align:inherit">La finanza corrente, il commercio e la contabilità sembrano spesso ridursi a questo aspetto. </font><font style="vertical-align:inherit">Mentre il mantenimento di un budget è veramente</font></font>[http://dooy.info/economic.html <font style="vertical-align:inherit">economico</font>]<font style="vertical-align:inherit"><font style="vertical-align:inherit">il cui nocciolo è la frugalità, l'enfasi negli affari oggi è più in una semplice </font>[http://dooy.info/quantitative.html#themes ''<font style="vertical-align:inherit">massimizzazione</font>'']<font style="vertical-align:inherit">numerica, ad esempio dei profitti o dell'efficienza e una </font>[http://dooy.info/quantitative.html#themes ''<font style="vertical-align:inherit">minimizzazione</font>'']<font style="vertical-align:inherit">dei costi. </font><font style="vertical-align:inherit">Nessuna idea di un limite qui; </font><font style="vertical-align:inherit">è puramente numerico.</font></font>


==== [[Metrica|Metrica]] ====
==== Metrica ====


<font style="vertical-align:inherit"><font style="vertical-align:inherit">Allo stesso modo, in molti campi c'è il desiderio o la tendenza a ridurre tutte le cose a misure numeriche o metriche. </font><font style="vertical-align:inherit">Questo, a quanto pare, è l'unico modo in cui pensiamo di poter prendere decisioni. </font><font style="vertical-align:inherit">Ma tale riduzione (teleologica) è dannosa, come ormai molti si rendono conto.</font></font>
<font style="vertical-align:inherit"><font style="vertical-align:inherit">Allo stesso modo, in molti campi c'è il desiderio o la tendenza a ridurre tutte le cose a misure numeriche o metriche. </font><font style="vertical-align:inherit">Questo, a quanto pare, è l'unico modo in cui pensiamo di poter prendere decisioni. </font><font style="vertical-align:inherit">Ma tale riduzione (teleologica) è dannosa, come ormai molti si rendono conto.</font></font>


==== [[Limiti_numerici_in_diritto|Limiti numerici in diritto]] ====
==== Limiti numerici in diritto ====


<font style="vertical-align:inherit"><font style="vertical-align:inherit">Molte leggi stabiliscono un limite numerico per separare le attività legali da quelle illegali. </font><font style="vertical-align:inherit">Uno comune è un limite di età. </font><font style="vertical-align:inherit">Questi limiti causano problemi a non finire. </font><font style="vertical-align:inherit">Ad esempio, proprio di recente nel Regno Unito il Parlamento ha discusso se l'età in cui gli adulti consenzienti possono impegnarsi privatamente in attività omosessuali debba essere ridotta da 18 a 16 anni, per allinearla al limite eterosessuale, sulla base del fatto che non è giusto differenziare. </font><font style="vertical-align:inherit">Ad esempio, spesso sentiamo sostenere che le persone di 16 anni e 1 giorno sono autorizzate a fare cose che altre solo pochi giorni più giovani non possono fare; </font><font style="vertical-align:inherit">il limite di 16 sembra arbitrario. </font><font style="vertical-align:inherit">Soprattutto quando la persona cronologicamente più giovane è in realtà più matura in vari modi. </font><font style="vertical-align:inherit">Ci sono molti problemi simili, come il limite di alcol nel sangue.</font></font> <font style="vertical-align:inherit"><font style="vertical-align:inherit">La radice dei problemi sta nell'usare i numeri come limiti legali, che è un tipo di riduzione. </font><font style="vertical-align:inherit">Anche se potrebbe non essere un tipo di riduzione così grave come altri, porta comunque a problemi. </font><font style="vertical-align:inherit">Quello che sta accadendo è che il vero elemento di differenziazione tra legale e illegale è stato tradotto in misura e limite numerico. </font><font style="vertical-align:inherit">Ad esempio, il vero problema della guida sotto l'effetto dell'alcool è quello di un comportamento irresponsabile ed egoistico e anche di risposte ottuse quando si è a capo di un artefatto potente e pericoloso. </font><font style="vertical-align:inherit">Ad esempio (come sosterrebbero alcuni, incluso me stesso), l'elemento di differenziazione dell'attività sessuale dovrebbe essere un atto di impegno serio e volontario nei confronti dell'altra persona (chiamato "matrimonio"), piuttosto che un limite di età arbitrario.</font></font>
<font style="vertical-align:inherit"><font style="vertical-align:inherit">Molte leggi stabiliscono un limite numerico per separare le attività legali da quelle illegali. </font><font style="vertical-align:inherit">Uno comune è un limite di età. </font><font style="vertical-align:inherit">Questi limiti causano problemi a non finire. </font><font style="vertical-align:inherit">Ad esempio, proprio di recente nel Regno Unito il Parlamento ha discusso se l'età in cui gli adulti consenzienti possono impegnarsi privatamente in attività omosessuali debba essere ridotta da 18 a 16 anni, per allinearla al limite eterosessuale, sulla base del fatto che non è giusto differenziare. </font><font style="vertical-align:inherit">Ad esempio, spesso sentiamo sostenere che le persone di 16 anni e 1 giorno sono autorizzate a fare cose che altre solo pochi giorni più giovani non possono fare; </font><font style="vertical-align:inherit">il limite di 16 sembra arbitrario. </font><font style="vertical-align:inherit">Soprattutto quando la persona cronologicamente più giovane è in realtà più matura in vari modi. </font><font style="vertical-align:inherit">Ci sono molti problemi simili, come il limite di alcol nel sangue.</font></font> <font style="vertical-align:inherit"><font style="vertical-align:inherit">La radice dei problemi sta nell'usare i numeri come limiti legali, che è un tipo di riduzione. </font><font style="vertical-align:inherit">Anche se potrebbe non essere un tipo di riduzione così grave come altri, porta comunque a problemi. </font><font style="vertical-align:inherit">Quello che sta accadendo è che il vero elemento di differenziazione tra legale e illegale è stato tradotto in misura e limite numerico. </font><font style="vertical-align:inherit">Ad esempio, il vero problema della guida sotto l'effetto dell'alcool è quello di un comportamento irresponsabile ed egoistico e anche di risposte ottuse quando si è a capo di un artefatto potente e pericoloso. </font><font style="vertical-align:inherit">Ad esempio (come sosterrebbero alcuni, incluso me stesso), l'elemento di differenziazione dell'attività sessuale dovrebbe essere un atto di impegno serio e volontario nei confronti dell'altra persona (chiamato "matrimonio"), piuttosto che un limite di età arbitrario.</font></font>
Riga 175: Riga 154:
<font style="vertical-align:inherit"><font style="vertical-align:inherit">Il problema è che tradurre qualcosa in numero potrebbe essere conveniente e potrebbe dare l'apparenza di precisione, ma fondamentalmente manca il vero punto e lo scopo. </font><font style="vertical-align:inherit">E quando iniziamo a</font></font>'''fare affidamento'''<font style="vertical-align:inherit">su una tale trasduzione allora abbiamo una </font>'''riduzione'''<font style="vertical-align:inherit">.</font>
<font style="vertical-align:inherit"><font style="vertical-align:inherit">Il problema è che tradurre qualcosa in numero potrebbe essere conveniente e potrebbe dare l'apparenza di precisione, ma fondamentalmente manca il vero punto e lo scopo. </font><font style="vertical-align:inherit">E quando iniziamo a</font></font>'''fare affidamento'''<font style="vertical-align:inherit">su una tale trasduzione allora abbiamo una </font>'''riduzione'''<font style="vertical-align:inherit">.</font>


&nbsp;
== Note ==
 
----
 
&nbsp;
 
== [[Note|Note]]<small>[http://dooy.info/ax.html#notes <font style="vertical-align:inherit">x</font>]</small> ==


==== [[Reali,_interi_e_razionali|Reali, interi e razionali]] ====
==== Reali, interi e razionali ====


<font style="vertical-align:inherit"><font style="vertical-align:inherit">Dooyeweerd afferma chiaramente che l'aspetto quantitativo ha come nocciolo la quantità discreta (si vedano le sue lunghe argomentazioni in NC II:79-95ss). </font><font style="vertical-align:inherit">Egli colloca la continuità all'interno dell'aspetto</font></font>[http://dooy.info/spatial.html <font style="vertical-align:inherit">spaziale</font>]<font style="vertical-align:inherit"><font style="vertical-align:inherit">, il cui nucleo è 'l'estensione continua', con una forte retrocessione a questo aspetto. </font><font style="vertical-align:inherit">Ad esempio, sostiene che i numeri irrazionali non sono in realtà numeri veri (ma piuttosto funzioni). </font><font style="vertical-align:inherit">Ho trovato difficoltà ad accettarlo, essendo stato educato a vedere il numero come essenzialmente continuo. </font><font style="vertical-align:inherit">Ma ora ho cambiato idea.</font></font> <font style="vertical-align:inherit"><font style="vertical-align:inherit">Di recente ho discusso di numeri interi e "reali" (continui) con un matematico. </font><font style="vertical-align:inherit">La discussione si è incentrata su due tipi di infinito. </font><font style="vertical-align:inherit">Quello relativo ai numeri reali è maggiore dell'infinito relativo ai numeri interi! </font><font style="vertical-align:inherit">A causa della natura continua dei numeri spaziali (estensione continua). </font><font style="vertical-align:inherit">Quindi, stava dicendo, i "reali" sono un tipo di numero fondamentalmente diverso e richiedono un diverso tipo di matematica. </font><font style="vertical-align:inherit">Questo riconoscimento di una differenza fondamentale è indicativo dell'attraversamento di un confine aspettuale. </font><font style="vertical-align:inherit">Quindi, poiché l'uso principale dei reali è far fronte a fattori spaziali, indirettamente se non direttamente, potrebbe sembrare che siano più legati all'aspetto spaziale.</font></font>
<font style="vertical-align:inherit"><font style="vertical-align:inherit">Dooyeweerd afferma chiaramente che l'aspetto quantitativo ha come nocciolo la quantità discreta (si vedano le sue lunghe argomentazioni in NC II:79-95ss). </font><font style="vertical-align:inherit">Egli colloca la continuità all'interno dell'aspetto</font></font>[http://dooy.info/spatial.html <font style="vertical-align:inherit">spaziale</font>]<font style="vertical-align:inherit"><font style="vertical-align:inherit">, il cui nucleo è 'l'estensione continua', con una forte retrocessione a questo aspetto. </font><font style="vertical-align:inherit">Ad esempio, sostiene che i numeri irrazionali non sono in realtà numeri veri (ma piuttosto funzioni). </font><font style="vertical-align:inherit">Ho trovato difficoltà ad accettarlo, essendo stato educato a vedere il numero come essenzialmente continuo. </font><font style="vertical-align:inherit">Ma ora ho cambiato idea.</font></font> <font style="vertical-align:inherit"><font style="vertical-align:inherit">Di recente ho discusso di numeri interi e "reali" (continui) con un matematico. </font><font style="vertical-align:inherit">La discussione si è incentrata su due tipi di infinito. </font><font style="vertical-align:inherit">Quello relativo ai numeri reali è maggiore dell'infinito relativo ai numeri interi! </font><font style="vertical-align:inherit">A causa della natura continua dei numeri spaziali (estensione continua). </font><font style="vertical-align:inherit">Quindi, stava dicendo, i "reali" sono un tipo di numero fondamentalmente diverso e richiedono un diverso tipo di matematica. </font><font style="vertical-align:inherit">Questo riconoscimento di una differenza fondamentale è indicativo dell'attraversamento di un confine aspettuale. </font><font style="vertical-align:inherit">Quindi, poiché l'uso principale dei reali è far fronte a fattori spaziali, indirettamente se non direttamente, potrebbe sembrare che siano più legati all'aspetto spaziale.</font></font>


<font style="vertical-align:inherit">Andrew Hartley mi ha inviato la seguente espansione su questo tema:</font>
<font style="vertical-align:inherit">Andrew Hartley mi ha inviato la seguente espansione su questo tema:</font>
&nbsp;
<blockquote>
<blockquote>
[[|<font style="vertical-align:inherit"><font style="vertical-align:inherit">"Sono tornato su alcune delle tue pagine web di Dooy e ho sentito che prima o poi dovrò fare i conti con l'idea di Dooy secondo cui i numeri reali appartengono alla modalità spaziale e non a quella quantitativa. ... Ho un'idea che sia tutto correlato al concetto di "</font></font>'''<font style="vertical-align:inherit"><font style="vertical-align:inherit">contabilità</font></font>'''<font style="vertical-align:inherit"><font style="vertical-align:inherit">",</font></font>]]<font style="vertical-align:inherit">ad esempio, come nel linguaggio di </font>[http://www.informatik.tu-darmstadt.de/RBG/service/FAQ2/Anleitungen/procmail/www.ii.com/nancym/index.html <font style="vertical-align:inherit">Nancy McGough</font>]<font style="vertical-align:inherit">che disse: "Nel 1874 </font>[http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Cantor.html <font style="vertical-align:inherit">Georg Cantor</font>]<font style="vertical-align:inherit">scoprì che esiste più di un livello di infinito. Il livello più basso è chiamato </font>''infinito numerabile''<font style="vertical-align:inherit">e i livelli superiori sono chiamati </font>''infiniti non numerabili ".''<font style="vertical-align:inherit"><font style="vertical-align:inherit">. </font><font style="vertical-align:inherit">I numeri naturali sono un esempio di un insieme numerabile infinito ei numeri reali sono un esempio di un insieme non numerabile infinito. </font><font style="vertical-align:inherit">Nel 1877 Cantor ipotizzò che il numero di numeri reali fosse il prossimo livello di infinito sopra l'infinito numerabile. </font><font style="vertical-align:inherit">Poiché i numeri reali sono usati per rappresentare un continuum lineare, questa ipotesi è chiamata</font></font>''Ipotesi del Continuo''<font style="vertical-align:inherit">o CH.'"</font>
[[|<font style="vertical-align:inherit"><font style="vertical-align:inherit">"Sono tornato su alcune delle tue pagine web di Dooy e ho sentito che prima o poi dovrò fare i conti con l'idea di Dooy secondo cui i numeri reali appartengono alla modalità spaziale e non a quella quantitativa. ... Ho un'idea che sia tutto correlato al concetto di "</font></font>'''<font style="vertical-align:inherit"><font style="vertical-align:inherit">contabilità</font></font>'''<font style="vertical-align:inherit"><font style="vertical-align:inherit">",</font></font>]]<font style="vertical-align:inherit">ad esempio, come nel linguaggio di </font>[http://www.informatik.tu-darmstadt.de/RBG/service/FAQ2/Anleitungen/procmail/www.ii.com/nancym/index.html <font style="vertical-align:inherit">Nancy McGough</font>]<font style="vertical-align:inherit">che disse: "Nel 1874 </font>[http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Cantor.html <font style="vertical-align:inherit">Georg Cantor</font>]<font style="vertical-align:inherit">scoprì che esiste più di un livello di infinito. Il livello più basso è chiamato </font>''infinito numerabile''<font style="vertical-align:inherit">e i livelli superiori sono chiamati </font>''infiniti non numerabili ".''<font style="vertical-align:inherit"><font style="vertical-align:inherit">. </font><font style="vertical-align:inherit">I numeri naturali sono un esempio di un insieme numerabile infinito ei numeri reali sono un esempio di un insieme non numerabile infinito. </font><font style="vertical-align:inherit">Nel 1877 Cantor ipotizzò che il numero di numeri reali fosse il prossimo livello di infinito sopra l'infinito numerabile. </font><font style="vertical-align:inherit">Poiché i numeri reali sono usati per rappresentare un continuum lineare, questa ipotesi è chiamata</font></font>''Ipotesi del Continuo''<font style="vertical-align:inherit">o CH.'"</font>
Riga 203: Riga 174:
<font style="vertical-align:inherit"><font style="vertical-align:inherit">Nell'aspetto quantitativo abbiamo una quantità (quantità) discreta che implica che abbiamo contato delle cose (es. persone in coda, granelli di zucchero in una pila, stelle in una galassia, molecole d'aria in una stanza), ma questo aspetto non implica che distinguiamo gli elementi che vengono contati, un granello di zucchero da un altro. </font><font style="vertical-align:inherit">Fare una tale distinzione, in cui le cose contate diventano individui significativi per noi, implica fare una distinzione, che è il nocciolo </font><font style="vertical-align:inherit">dell'aspetto</font></font>[http://dooy.info/analytical.html <font style="vertical-align:inherit">analitico .</font>]<font style="vertical-align:inherit"><font style="vertical-align:inherit">Nella teoria degli insiemi, facciamo queste distinzioni. </font><font style="vertical-align:inherit">Pertanto, basando la matematica interamente sulla teoria degli insiemi, Russell e Whitehead riducevano l'aspetto quantitativo a quello analitico.</font></font>
<font style="vertical-align:inherit"><font style="vertical-align:inherit">Nell'aspetto quantitativo abbiamo una quantità (quantità) discreta che implica che abbiamo contato delle cose (es. persone in coda, granelli di zucchero in una pila, stelle in una galassia, molecole d'aria in una stanza), ma questo aspetto non implica che distinguiamo gli elementi che vengono contati, un granello di zucchero da un altro. </font><font style="vertical-align:inherit">Fare una tale distinzione, in cui le cose contate diventano individui significativi per noi, implica fare una distinzione, che è il nocciolo </font><font style="vertical-align:inherit">dell'aspetto</font></font>[http://dooy.info/analytical.html <font style="vertical-align:inherit">analitico .</font>]<font style="vertical-align:inherit"><font style="vertical-align:inherit">Nella teoria degli insiemi, facciamo queste distinzioni. </font><font style="vertical-align:inherit">Pertanto, basando la matematica interamente sulla teoria degli insiemi, Russell e Whitehead riducevano l'aspetto quantitativo a quello analitico.</font></font>


== [[Commenti_ricevuti|Commenti ricevuti]]<small>[http://dooy.info/ax.html#comment <font style="vertical-align:inherit">x</font>]</small> ==
==== [[Da_AM|Da AM]] ====
<small>(Una discussione che ho avuto con AM tramite e-mail. Ho mantenuto la formulazione e l'ortografia esatte, ma ho aggiunto codici html, riferimenti, ecc.)</small> '''AM'''<font style="vertical-align:inherit"><font style="vertical-align:inherit">: La dimensione numerica che chiamiamo in relazione alla quantità con il valore numerico del kernel. </font><font style="vertical-align:inherit">La modalità è visibile in tutto ciò che può essere espresso in numeri e che si riferisce a quantità e/o quantità, ad esempio numero di beni prodotti, numero di stanze in una casa (ma non la dimensione delle stanze che si riferisce allo spazio), numero di muri, numero di articoli che si acquistano in una situazione di shopping, quantità di denaro da pagare per gli articoli ecc.</font></font>
'''AB'''<font style="vertical-align:inherit"><font style="vertical-align:inherit">: È interessante notare che recentemente ho discusso di numeri interi e "reali" (continui) con un matematico. </font><font style="vertical-align:inherit">Pensavo che i numeri reali facessero parte della modalità quantitativa, ma ora ho cambiato idea. </font><font style="vertical-align:inherit">Mentre gli interi e i razionali fanno parte della modalità quantitativa, i numeri reali fanno parte della modalità spaziale. </font><font style="vertical-align:inherit">La discussione si è incentrata su due tipi di infinito. </font><font style="vertical-align:inherit">Quello relativo ai numeri reali è più grande dell'infinito relativo agli interi! </font><font style="vertical-align:inherit">A causa della natura continua dei numeri spaziali (estensione continua). </font><font style="vertical-align:inherit">È interessante scoprire che Dooy ha compreso questa profonda idea matematica.</font></font>
'''AM'''<font style="vertical-align:inherit"><font style="vertical-align:inherit">: Ho dei problemi a capire questa modalità e devo dirmi che questa è la definizione che adotterò. </font><font style="vertical-align:inherit">Vedo i numeri come rappresentazioni simboliche (linguistiche) e quindi la dimensione numerica diventa molto confusa. </font><font style="vertical-align:inherit">Non sono stato in grado di distinguere tra i numeri come "valore numerico" e come simboli per il linguaggio.</font></font>
'''AB'''<font style="vertical-align:inherit"><font style="vertical-align:inherit">: Sì, ti confonde se non riesci a cogliere il concetto di numero senza le sue forme simboliche convenzionali. </font><font style="vertical-align:inherit">Per aiutarmi faccio due passi.</font></font>
*<font style="vertical-align:inherit">1. Riconoscere che ho a che fare con la "quantità" piuttosto che con la cardinalità di un insieme (numero di oggetti in un insieme).</font>
*<font style="vertical-align:inherit"><font style="vertical-align:inherit">2. Pensa alla "quantità" come alla quantità di sabbia che ho in mano. </font><font style="vertical-align:inherit">(O zucchero, qualsiasi cosa con i cereali, se preferisci.)</font></font>
[[Questo_aiuta_in_due_modi.|Questo aiuta in due modi.]]<font style="vertical-align:inherit"><font style="vertical-align:inherit">In primo luogo, quando tengo la sabbia in mano posso immediatamente concepire una "quantità" senza un numero specifico. </font><font style="vertical-align:inherit">Ma poi quando ci rifletto mi rendo conto che ha anche un numero specifico che è alla base della mia concezione intuitiva. </font><font style="vertical-align:inherit">Vale a dire, il numero di granelli di sabbia. </font><font style="vertical-align:inherit">È solo che pensare in questo modo mi allontana dalla confusione creata dalla nostra tendenza a separare i numeri l'uno dall'altro, che è ciò che fa la loro rappresentazione simbolica come cifre. </font><font style="vertical-align:inherit">(NB. 'separazione' è 'distinzione', cioè</font></font>[http://dooy.info/analytical.html <font style="vertical-align:inherit">modalità analitica</font>]<font style="vertical-align:inherit">.}</font> <font style="vertical-align:inherit">Quindi, ciò che abbiamo è l'apprezzamento grezzo e intuitivo del numero-quantità in contrasto con la concettualizzazione del numero-come-simbolo-distinto.</font>


[[Category:Filosofia riformata]]
[[Category:Filosofia riformata]]

Versione attuale delle 17:44, 29 dic 2022

Ritorno


L'aspetto quantitativo

Brevemente ...

Sperimentiamo l'aspetto quantitativo nel modo più intuitivo e diretto come uno, diversi e molti, e confronti di meno e più. Concetti come approssimativo, medio, minimo, massimo, quantità, quantità, numero, frazione, rapporto, numero primo, sono significativi sotto l'aspetto quantitativo; ognuno può essere derivato solo da leggi quantitative. Concetti comepi greconon lo sono, ma richiedono l'importazione di un significato spaziale. Addizione, incremento, divisione e così via sono funzioni significative sotto l'aspetto quantitativo. L'analisi statistica è un'attività umana molto dell'aspetto quantitativo (ma anche analitico). La discussione di Dooyeweerd sull'aspetto quantitativo si veda [1955, II, 79-93]. Quattro dita su una mano e quattro punte sul compasso: qui sotto l'aspetto analitico ci sono due 4, perché fa differenza tra dita e compasso, ma sotto l'aspetto quantitativo c'è solo un 4. Non è tanto il numero che esiste in l'aspetto quantitativo, come 'numberbess', ad esempio 4-ness. Funzionare nell'aspetto quantitativo (la mano 'ha' quattro dita) non sembra l'agire dinamico che si trova nella maggior parte degli aspetti, ma piuttosto come possedere un attributo o una proprietà, o 'essere' di una certa quantità; il dinamismo entra con l'aspetto cinematico.

La possibilità 'buona' fondamentale che l'aspetto quantitativo presenta è l' importo e l'ordine attendibili. L'ammontare quantitativo è attendibile perché ogni importo, diverso dall'infinito, conserva sempre e in tutte le situazioni lo stesso significato quantitativo, diverso da tutti gli altri. L'ordine è affidabile; per esempio 4-ness è sempre dopo 3.9-ness e prima di 4.1-ness. Questo è così fondamentale che di solito lo diamo per scontato, ma il funzionamento in tutti gli altri aspetti si basa su questo.

Definizione dell'Aspetto

Nocciolo

  • Quantità discreta (kernel di Dooyeweerd)
  • "Uno, molti molti; più e meno. Introduce importo affidabile" (rendering intuitivo di Basden)
  • Quantità
  • Numerabilità
  • Pensa a questo come non tanto 7 quanto 7-ness, non tanto 283756y365 quanto 283756y365-ness, e ti avvicinerai a capire cos'è il kernel.
  • 'Numberness' (piuttosto che 'numeri')

piuttosto che:

  • Numero espresso in cifre, che è Lingual
  • Numero continuo, che Dooyeweerd vede come all'interno dell'aspettospaziale .
  • Non è nemmeno il numero in quanto tale, quanto piuttosto la "quantità", di cui si può cogliere intuitivamente un'idea; vedisotto.
  • L'atto di discretizzazione, che Dooyeweerd vede all'interno dell'aspettoanalitico .

Alcuni temi centrali

  • Progressione. Che dà serie infinite.
  • I numeri irrazionali, direbbe Dooyeweerd, non sono numeri autentici, ma piuttosto un'anticipazione dell'aspetto spaziale. La nostra tendenza a presumere che siano numeri di pari status con i numeri razionali deriva da alcuni aritmetici che hanno fuso illato soggetto (numeri) nel lato legge (leggi aritmetiche).
  • Massimizzazione, minimizzazione di attributi numerici.
  • Confronto numerico
  • Operazioni numeriche, funzioni e algebra
  • La discretezza della quantità differisce dalla "distinzione" in quanto risulta essere il nocciolo dell'aspettoanalitico .

Si noti che probabilmente questo aspetto copre numeri interi e razionali (rapporto) ma non reali (continui).

Sull'uno e sui molti; Su unità e molteplicità

La differenza tra uno e molti è quantitativa e Dooyeweerd fa molto di questo. Così fa Strauss [2009] e molti altri pensatori riformatori. Danno anche molta importanza a "unità e molteplicità". Ma l'unità-e-molteplicità sembra diversa. Ho cercato "molteplicità" in tutti e quattro i volumi di New Critiquedi Dooyeweerd e ho scoperto che è spesso usato nel contesto del conteggio analitico piuttosto che della quantità in quanto tale.

Lo studio: ho diviso le 144 occorrenze di "molteplicità" in NC, I-IV in quelle che accompagnavano "l'unità" (69) da quelle che non lo facevano (75). Nel primo, "logico" è stato trovato 65 volte. In quest'ultimo, "logico" è stato trovato solo 20 volte. Nelle occorrenze senza "unità", "molteplicità di" era per lo più semplicemente dire "molti" di qualche tipo di cosa, per esempio di forme storiche. Ergo, sembra che "l'unità-molteplicità" riguardi l'analisi, non il puro quantitativo.

Idee sbagliate comuni

  • Quella quantità può essere continua; la continuità è dell'aspetto spaziale; vedisotto.

L'aspetto stesso

Non assolutezza

L'assolutezza ha a che fare con l'affidabilità. Possiamo fare affidamento su ciò che è assoluto. Un 'bene' che questo aspetto introduce nella realtà creata è l'affidabilità. Ad esempio, il settenismo è sempre il settenismo, mai il sessismo, e su questo si può fare affidamento in ogni luogo e in ogni tempo. La somma di sette e sei sarà sempre tredici, mai quindici. Quindi l'aspetto quantitativo sembra assolutamente attendibile. Ad esempio, tutto il funzionamento fisico si basa su questo, sia quantistico che macroscopico. Ma sembrano esserci almeno due tipi di non assolutezza [qualcuno più esperto di me ha bisogno di controllarli].  

  • Infinito. L'infinito è un numero in cui "X-ness non è mai Y-ness" si interrompe.
  • Casualità dell'occorrenza dei numeri primi. Dall'affidabilità ci si potrebbe aspettare leggi che determinano dove si verifica ogni numerazione, ad esempio l'uniformità è ogni altra integrità. Ma la distribuzione dei numeri primi sembra del tutto casuale, cioè senza legge. Non è stato ancora trovato alcun modo per prevedere in modo affidabile il prossimo numero primo.

Scienza speciale

  • Aritmetica
  • Statistiche
  • Si noti che la matematica, così come viene praticata nel suo insieme, include molto più della quantità in matematica, poiché è un'attività che coinvolge ad esempio analisi e distinzione, comunicazione simbolica, ecc.

Istituzioni

Shalom

  • Che possiamo fare affidamento su una quantità che è sempre quella quantità finché non viene agita su di essa. La 7-ness non diventa improvvisamente 6-ness.

Danno

  • Obiettivi nazionali - come il governo del Regno Unito sembra entusiasta. È stato riferito oggi che, poiché il governo ha assegnato ai medici generici un obiettivo di una lista d'attesa non superiore a 48 ore, alcuni ambulatori si rifiutano di prenotare appuntamenti con più di 48 ore di anticipo. Possiamo vedere questo come un'elevazione dell'aspetto quantitativo rispetto a quello della salute (biotica) o della cura ( etica). (Naturalmente, gli obiettivi implicano anche il conseguimento, che è dell'aspettoformativo .)

Divinizzare questo aspetto quantitativo

Dooyeweerd suggerisce [NC, II, 337-8] che Cartesio e Leibniz deificarono la matematica. Questa è una sorta di riduzione al quantitativo.  

Contributi dal campo

Pieter de Wet ha inviato un'e-mail (12 aprile 2012) a quanto segue:

"La teoria dei numeri è l'elaborazione delle proprietà di tutte le strutture del tipo d'ordine dei numeri. I numeri parole non hanno referenti singoli." Paul Benacerraff in Quello che i numeri non potrebbero essere. (Rassegna filosofica, 74, 1965:47-73)

Benacerraf argomenta in modo così elegante, da un punto di vista del PCI, sulla scomposizione dei concetti linguistici e logici che si atteggiano a numerici. Il rapporto tra verità, identità e riferimento è in tale tensione nei testi analitici. Solo qualcosa che ho pensato di condividere per quel che vale.


L'aspetto tra gli altri

Dipendenze dalla legge

Nessuno - questo è l'aspetto più antico, quindi le sue leggi non dipendono da quelle di nessun altro aspetto. Tuttavia, come con tutta la realtà, dipendono dal Dio vivente, che sostiene e sostiene tutta la creazione. Viceversa, tutte le leggi dipendono da quelle di questo aspetto. In effetti, questo sembra essere ciò che troviamo.

Serie di Fibonacci

I semi di girasole sono disposti come una serie di Fibonacci. Così sono molte altre cose biologiche. Questa è una prova del concetto di Dooyeweerd secondo cui, ad esempio , le leggibiotichedipendono dalla matematica come aspetto precedente. Possiamo vedere almeno una ragione per questo (spiegatami da un eminente matematico di cui non ricordo il nome): fornisce la migliore disposizione dell'imballaggio, con il minimo spreco di spazio. (Notare il suggerimento di un collegamento con l' aspettoeconomico .)

Analogie

Pratichiamo molte analogie con la modalità quantitativa. Ogni volta che usiamo una metrica stiamo trasducendo in numero, e quindi facendo uso del potenziale insito per l'analogia tra ogni aspetto e il quantitativo. Ecco alcuni esempi.  

  • La dimensione è la quantità spaziale.
  • La velocità è forse la quantità cinematica.
  • La musica è ciò che ha convinto i pitagorici che l'universo funziona con i numeri - qualche legame con l' aspettoestetico ?Probabilmente un collegamento analogico piuttosto che di dipendenza.
  • La capacità del computer di eseguire operazioni aritmetiche utilizzando la logica binaria potrebbe essere vista come una retrocessione dall'aspetto logico (analitico)a quello quantitativo. Ma questo deve essere verificato in modo più preciso.
  • Bergson vedeva la durata come il dispiegarsi del numero in azione.
  • eccetera.

Analogie di altri aspetti nel quantitativo potrebbero includere:

  • Che ogni numero (maggiore di 1) possa dirsi simultaneo con tutti i fattori che lo compongono (moltiplicativi o additivi) potrebbe essere un'analogia dell'aspettospaziale .Non è simultaneità nel modo che ritroviamo nell'aspetto spaziale, essendo non necessario. Da qui la congettura di Goldbach, che ogni numero pari è la somma di due numeri primi.

I tipi di quantità anticipano gli aspetti successivi

(Grazie ad Arie Dirkzwager per averlo chiarito.) Primo, abbiamo la quantità discreta semplice, che conta le cose; questo tuttavia è un obiettivo piuttosto che una piena anticipazione.

In secondo luogo, abbiamo rapporti di questi ("numeri razionali") dalla divisione di gruppi di cose in parti. Finora, solo nell'aspetto quantitativo. E solo razionali positivi (o non negativi).

Quindi guardiamo l' aspetto spaziale, e guardiamo un triangolo ad angolo retto con i lati di una unità, e troviamo che l'ipotenusa ha una lunghezza la cui quantità non è un numero razionale, cioè non può essere costruita come un rapporto. Quindi, guardando all'aspetto spaziale, scopriamo un nuovo tipo di quantità nell'aspetto quantitativo, vale a dire gli irrazionali. Le radici quadrate sono spesso di questo tipo.

Quindi, guarda l' aspetto cinematicoe incontriamo il movimento. Ora, 'spostandoci' tra i numeri stessi, scopriamo che oltre a spostarci su numeri più grandi possiamo spostarci su numeri più piccoli e passare da zero a numeri negativi. Troviamo anche un tipo speciale di numero, il numero immaginario o complesso, che è la radice quadrata di un numero negativo. Quindi, passando all'aspetto cinematico, scopriamo ancora un altro tipo di numero.

E così via. Quindi, cose diverse nell'aspetto quantitativo sembrano anticipare cose diverse in aspetti successivi, e possiamo determinare quale aspetto chiedendo "Quale aspetto rende questo significativo piuttosto che una semplice curiosità accademica della matematica?":

  • Interi e razionali: rimanete in questo aspetto. Così come le nozioni di "più" e "meno".
  • Irrazionali: l' aspettospaziale[NC, II:185]; Approssimazione[NC, II:185]
  • Numeri negativi (come movimento), numeri complessi [NC, II:170,172]e differenziazione [NC, II:185]: l' aspettocinematico .
  • La serie di Fibonacci anticipa la biotica.
  • Logaritmi: l' aspetto sensibile(es. decibel per livello sonoro, ottave di pianoforte, percezione della luminosità) (suggerito dal compianto Arie Dirkzwaager)
  • La teoria degli insiemi anticipa l' aspetto analiticoin cui distinguiamo gli individui; vedisotto. Numeri anche enumerati, utilizzati per identificare gli elementi in un elenco.
  • (credo, contro Dooyeweerd, che) l'ordine numerico anticipi l' aspetto formativo, perché senza quest'ultimo non c'è motivo di metterli in ordine; vedisotto.
  • La contabilità in partita doppia anticipa l' aspettoeconomico .

Vedi questo in una forma tabularepiù completa per illustrare la nozione di anticipazionenel suo insieme.

Antinomie

Riduzioni comuni

Finanza

La finanza corrente, il commercio e la contabilità sembrano spesso ridursi a questo aspetto. Mentre il mantenimento di un budget è veramenteeconomicoil cui nocciolo è la frugalità, l'enfasi negli affari oggi è più in una semplice massimizzazionenumerica, ad esempio dei profitti o dell'efficienza e una minimizzazionedei costi. Nessuna idea di un limite qui; è puramente numerico.

Metrica

Allo stesso modo, in molti campi c'è il desiderio o la tendenza a ridurre tutte le cose a misure numeriche o metriche. Questo, a quanto pare, è l'unico modo in cui pensiamo di poter prendere decisioni. Ma tale riduzione (teleologica) è dannosa, come ormai molti si rendono conto.

Limiti numerici in diritto

Molte leggi stabiliscono un limite numerico per separare le attività legali da quelle illegali. Uno comune è un limite di età. Questi limiti causano problemi a non finire. Ad esempio, proprio di recente nel Regno Unito il Parlamento ha discusso se l'età in cui gli adulti consenzienti possono impegnarsi privatamente in attività omosessuali debba essere ridotta da 18 a 16 anni, per allinearla al limite eterosessuale, sulla base del fatto che non è giusto differenziare. Ad esempio, spesso sentiamo sostenere che le persone di 16 anni e 1 giorno sono autorizzate a fare cose che altre solo pochi giorni più giovani non possono fare; il limite di 16 sembra arbitrario. Soprattutto quando la persona cronologicamente più giovane è in realtà più matura in vari modi. Ci sono molti problemi simili, come il limite di alcol nel sangue. La radice dei problemi sta nell'usare i numeri come limiti legali, che è un tipo di riduzione. Anche se potrebbe non essere un tipo di riduzione così grave come altri, porta comunque a problemi. Quello che sta accadendo è che il vero elemento di differenziazione tra legale e illegale è stato tradotto in misura e limite numerico. Ad esempio, il vero problema della guida sotto l'effetto dell'alcool è quello di un comportamento irresponsabile ed egoistico e anche di risposte ottuse quando si è a capo di un artefatto potente e pericoloso. Ad esempio (come sosterrebbero alcuni, incluso me stesso), l'elemento di differenziazione dell'attività sessuale dovrebbe essere un atto di impegno serio e volontario nei confronti dell'altra persona (chiamato "matrimonio"), piuttosto che un limite di età arbitrario.

Il problema è che tradurre qualcosa in numero potrebbe essere conveniente e potrebbe dare l'apparenza di precisione, ma fondamentalmente manca il vero punto e lo scopo. E quando iniziamo afare affidamentosu una tale trasduzione allora abbiamo una riduzione.

Note

Reali, interi e razionali

Dooyeweerd afferma chiaramente che l'aspetto quantitativo ha come nocciolo la quantità discreta (si vedano le sue lunghe argomentazioni in NC II:79-95ss). Egli colloca la continuità all'interno dell'aspettospaziale, il cui nucleo è 'l'estensione continua', con una forte retrocessione a questo aspetto. Ad esempio, sostiene che i numeri irrazionali non sono in realtà numeri veri (ma piuttosto funzioni). Ho trovato difficoltà ad accettarlo, essendo stato educato a vedere il numero come essenzialmente continuo. Ma ora ho cambiato idea. Di recente ho discusso di numeri interi e "reali" (continui) con un matematico. La discussione si è incentrata su due tipi di infinito. Quello relativo ai numeri reali è maggiore dell'infinito relativo ai numeri interi! A causa della natura continua dei numeri spaziali (estensione continua). Quindi, stava dicendo, i "reali" sono un tipo di numero fondamentalmente diverso e richiedono un diverso tipo di matematica. Questo riconoscimento di una differenza fondamentale è indicativo dell'attraversamento di un confine aspettuale. Quindi, poiché l'uso principale dei reali è far fronte a fattori spaziali, indirettamente se non direttamente, potrebbe sembrare che siano più legati all'aspetto spaziale.

Andrew Hartley mi ha inviato la seguente espansione su questo tema:

[[|"Sono tornato su alcune delle tue pagine web di Dooy e ho sentito che prima o poi dovrò fare i conti con l'idea di Dooy secondo cui i numeri reali appartengono alla modalità spaziale e non a quella quantitativa. ... Ho un'idea che sia tutto correlato al concetto di "contabilità",]]ad esempio, come nel linguaggio di Nancy McGoughche disse: "Nel 1874 Georg Cantorscoprì che esiste più di un livello di infinito. Il livello più basso è chiamato infinito numerabilee i livelli superiori sono chiamati infiniti non numerabili ".. I numeri naturali sono un esempio di un insieme numerabile infinito ei numeri reali sono un esempio di un insieme non numerabile infinito. Nel 1877 Cantor ipotizzò che il numero di numeri reali fosse il prossimo livello di infinito sopra l'infinito numerabile. Poiché i numeri reali sono usati per rappresentare un continuum lineare, questa ipotesi è chiamataIpotesi del Continuoo CH.'"

È interessante scoprire che Dooyeweerd, un avvocato, ha compreso questa profonda idea matematica e ha visto il nocciolo dell'aspetto spazialecome estensione continua piuttosto che forma, posizione, distanza, curvatura o altro.

Perché l'ordine numerico può essere formativo

Le solite ragioni addotte per cui l'ordine numerico è una cosa quantitativa originale sono che se abbiamo tre quantità, A, B, C, tali che A < B e B < C, allora è ovvio che dovremmo mettere la seconda dopo la prima per ottenere l'ordine A, B, C. Ma io sostengo che, sebbene nell'aspetto quantitativo abbiamo importi e confronti di importi, mettere il secondo dopo il primo per ottenere l'ordine A, B, C presuppone una ragione per cui dovremmo collocare l'ordine A, B, C. secondo dopo il primo. Quindi impieghiamo deliberatamente il potere formativo per scegliere di farlo: aspettoformativo .Ciò può essere chiarito se sostituiamo il secondo confronto con 'C > B' (che ha lo stesso significato nell'aspetto quantitativo).

Perché gli insiemi sono analitici

Nell'aspetto quantitativo abbiamo una quantità (quantità) discreta che implica che abbiamo contato delle cose (es. persone in coda, granelli di zucchero in una pila, stelle in una galassia, molecole d'aria in una stanza), ma questo aspetto non implica che distinguiamo gli elementi che vengono contati, un granello di zucchero da un altro. Fare una tale distinzione, in cui le cose contate diventano individui significativi per noi, implica fare una distinzione, che è il nocciolo dell'aspettoanalitico .Nella teoria degli insiemi, facciamo queste distinzioni. Pertanto, basando la matematica interamente sulla teoria degli insiemi, Russell e Whitehead riducevano l'aspetto quantitativo a quello analitico.